论文标题

使用热图像对船舶进行弱监督的语义分割

Weakly-Supervised Semantic Segmentation of Ships Using Thermal Imagery

论文作者

Joshi, Rushil, Adams, Ethan, Ziemann, Matthew, Metzler, Christopher A.

论文摘要

美国海岸线跨越95,471英里;仅凭人类努力就无法有效地巡逻或确保的距离。配备红外摄像机和基于深度学习的算法的无人飞行器(UAV)代表了一种更有效的替代方案,用于识别和分割感兴趣的对象,即船只。但是,训练这些算法的标准方法需要大规模标记为红外海事图像的大规模数据集。此类数据集并非公开可用,并且在大规模数据集中手动注释每个像素将具有极高的人工成本。在这项工作中,我们证明,在红外图像中分割船舶的背景下,用稀疏标记数据的算法微弱地监督可以大大降低数据标记成本,而对系统性能的影响最小。我们将弱监督的学习应用于一个未标记的数据集,该数据集来自海军空战中心飞机部(NAWCAD)的7055个红外图像。我们发现,通过稀疏标记每个图像仅32点,弱监督的分割模型仍然可以有效地检测和分段船,其JACCARD得分高达0.756。

The United States coastline spans 95,471 miles; a distance that cannot be effectively patrolled or secured by manual human effort alone. Unmanned Aerial Vehicles (UAVs) equipped with infrared cameras and deep-learning based algorithms represent a more efficient alternative for identifying and segmenting objects of interest - namely, ships. However, standard approaches to training these algorithms require large-scale datasets of densely labeled infrared maritime images. Such datasets are not publicly available and manually annotating every pixel in a large-scale dataset would have an extreme labor cost. In this work we demonstrate that, in the context of segmenting ships in infrared imagery, weakly-supervising an algorithm with sparsely labeled data can drastically reduce data labeling costs with minimal impact on system performance. We apply weakly-supervised learning to an unlabeled dataset of 7055 infrared images sourced from the Naval Air Warfare Center Aircraft Division (NAWCAD). We find that by sparsely labeling only 32 points per image, weakly-supervised segmentation models can still effectively detect and segment ships, with a Jaccard score of up to 0.756.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源