论文标题
纳米工程硅设备中的可编程频率箱量子状态
Programmable frequency-bin quantum states in a nano-engineered silicon device
论文作者
论文摘要
当通过光网络通过光网络传输以进行实际应用时,光子量子位应具有可控的芯片和噪声。此外,量子源应该是可以编程的,并且具有高亮度,可用于量子算法并具有对损失的弹性。但是,广泛编码方案仅在这些属性中最多合并。在这里,我们通过演示可编程的硅纳米光子芯片生成频率件纠缠光子来克服这一障碍,这是一种编码方案,该方案与光学链路上的远距离传输兼容。可以使用现有的电信组件来操纵发射的量子状态,包括可以集成在硅光子学中的活动设备。作为演示,我们表明可以对我们的芯片进行编程,以生成一个两个问题系统的四个计算基础状态,以及四个最大输入的铃铛状态。我们的设备结合了芯片状态重新配置和密集整合的所有关键专业,同时确保了高亮度,忠诚度和纯度。
Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties. Here, we overcome this hurdle by demonstrating a programmable silicon nano-photonic chip generating frequency-bin entangled photons, an encoding scheme compatible with long-range transmission over optical links. The emitted quantum states can be manipulated using existing telecommunication components, including active devices that can be integrated in silicon photonics. As a demonstration, we show our chip can be programmed to generate the four computational basis states, and the four maximally-entangled Bell states, of a two-qubits system. Our device combines all the key-properties of on-chip state reconfigurability and dense integration, while ensuring high brightness, fidelity, and purity.