论文标题

2-HOP邻居类的相似性(2NC):图形神经网络性能的图形结构度量

2-hop Neighbor Class Similarity (2NCS): A graph structural metric indicative of graph neural network performance

论文作者

Cavallo, Andrea, Grohnfeldt, Claas, Russo, Michele, Lovisotto, Giulio, Vassio, Luca

论文摘要

图形神经网络(GNN)在跨众多域的图形结构数据上实现了最新的性能。它们的基本能力代表节点作为其替代性的摘要已被证明对同质图有效,其中相同型节点倾向于连接。在可能连接不同型节点的异性图上,GNN的表现不佳,因为邻里信息可能不那么代表性甚至误导性。另一方面,GNN的性能在所有异性图上都不优于劣等,并且缺乏对其他图形属性影响GNN性能的理解。 在这项工作中,我们重点介绍了广泛使用的同质比率和最近跨阶层社区相似性(CCN)度量的局限性,以估算GNN性能。为了克服这些局限性,我们引入了2-HOP邻居类的相似性(2NC),这是一种新的定量图结构属性,与替代指标相比,与GNN性能更加强烈,更稳定地相关。 2NC将两个跳跃社区视为理论上衍生的两步标签传播过程的后果,该过程管理GCN的训练推动过程。在一个合成和八个现实世界图数据集上进行的实验证实了对现有指标的一致改进,以估计基于GCN和GAT的架构在节点分类任务上的准确性。

Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源