论文标题
表征和建模移动核心网络的控制平面流量
Characterizing and Modeling Control-Plane Traffic for Mobile Core Network
论文作者
论文摘要
在本文中,我们首先使用现实世界中的控制平面轨迹对控制平面流量进行了第一个对控制平面流量的深入表征,用于在现实世界中的LTE移动核心网络(MCN)中采样的37,325 UE。我们的分析表明,控制事件在设备类型和UES之间的时间上表现出显着的多样性。其次,我们研究已广泛采用用于建模互联网流量的传统概率分布是否可以对源自单个UES的控制平面流量进行建模。我们的分析表明,控制事件的到达时间以及EMM和ECM的UE状态中的逗留时间不能以泊松过程或其他传统概率分布为模型。我们进一步表明,与传统模型相比,这些模型无法捕获控制平面流量的原因是由于其更高的爆发性和累积分布的更长的尾巴所致。第三,我们根据我们的自适应聚类方案得出的UE群集的两级基于状态机器的流量模型,该模型基于Semi-Markov模型,以捕获移动网络控制平面流量的关键特征,尤其是每个UE所产生的事件,以及UES的设备类型和时间中的多样性。最后,我们展示了如何轻松地从LTE到5G调整模型,以支持建模5G控制平面流量,当可用于训练调整后的模型时,可用于5G UES的相当大的控制平面跟踪。开发的LTE/5G网络的开发控制平面交通生成器开源给研究社区,以支持高性能MCN Architecture Design R&D。
In this paper, we first carry out to our knowledge the first in-depth characterization of control-plane traffic, using a real-world control-plane trace for 37,325 UEs sampled at a real-world LTE Mobile Core Network (MCN). Our analysis shows that control events exhibit significant diversity in device types and time-of-day among UEs. Second, we study whether traditional probability distributions that have been widely adopted for modeling Internet traffic can model the control-plane traffic originated from individual UEs. Our analysis shows that the inter-arrival time of the control events as well as the sojourn time in the UE states of EMM and ECM for the cellular network cannot be modeled as Poisson processes or other traditional probability distributions. We further show that the reasons that these models fail to capture the control-plane traffic are due to its higher burstiness and longer tails in the cumulative distribution than the traditional models. Third, we propose a two-level hierarchical state-machine-based traffic model for UE clusters derived from our adaptive clustering scheme based on the Semi-Markov Model to capture key characteristics of mobile network control-plane traffic -- in particular, the dependence among events generated by each UE, and the diversity in device types and time-of-day among UEs. Finally, we show how our model can be easily adjusted from LTE to 5G to support modeling 5G control-plane traffic, when the sizable control-plane trace for 5G UEs becomes available to train the adjusted model. The developed control-plane traffic generator for LTE/5G networks is open-sourced to the research community to support high-performance MCN architecture design R&D.