论文标题
开发在正常工作条件下和瞬态过程中核反应堆和类似系统的热二元模拟方法的开发
Development of methods for thermo-hydraulic simulation of nuclear reactors and similar systems in normal working conditions and in transient processes
论文作者
论文摘要
本报告的目的是提出为满足M.Sc的要求而进行的最终项目。 NEGEV的本古里昂大学(BGU)机械工程系学位。该项目包括理论研究,研究了自然对流可压缩流,具有高温差异和复杂的几何形状。研究动机来自长期研究和模拟反应堆核心中现有的稳态和瞬态多相流体,这是由Soreq核中心确定的。该项目的主要目的是开发一种全面的数值方法,该方法可以使用计算流体动力学(CFD)的标准技术(基于压力)的解决方案算法和沉浸式边界方法对自然对流可压缩流的理论建模和具有复杂几何形状的理论模型。该报告包含: - 一种全面的文献综述测量方法,用于模拟自然对流流量和浸入边界方法。 - 进行研究的目标的扩展轮廓。 - 一个综合的物理模型,包括管理方程,定义,构成定律和维度分析。 - 通过与相应的独立数值数据进行的验证研究,用于文献中可用于不可压缩和不可压缩流的文献中,没有复杂的几何形状。 - 本研究中获得的结果与先前研究结果的结果之间的比较,用于低温差和复杂几何形状的构型。 - 对具有高温差异和复杂几何形状的配置的解决方案和分析。 - 为未来工作的摘要,结论和建议。
The goal of this report is to present the final project conducted in order to fulfill the requirements of the M.Sc. degree at the Department of Mechanical Engineering, Ben-Gurion University (BGU) of the Negev. The project comprises theoretical research investigating natural convection compressible flow with high temperature differences and with complex geometries. The research motivation comes from long-term research investigating and simulating the steady state and transient multiphase flow regimes existing in the reactor core, that was established by the Soreq Nuclear Center. The main objective of this project is to develop a comprehensive numerical methodology that is capable of theoretical modeling of natural convection compressible flow with high temperature differences and with complex geometries, using standard techniques of computational fluid dynamics (CFD) - pressure-based solution algorithms and immersed boundary methods. This report contains: - A comprehensive literature review surveying methods for the simulation of natural convection flow and immersed boundary methods. - An extended outline of the objectives of the performed research. - A comprehensive physical model, including the governing equations, definitions, constitutive laws, and dimensional analysis. - A verification study by favorable comparison with corresponding independent numerical data available in the literature for incompressible, and non-Bossinesq compressible flows, without complex geometry. - A comparison between results obtained in the present study and results from previous studies for configurations with low temperature difference and complex geometry. - A solution and analysis of the configurations with high temperature differences and complex geometry. - A summary, conclusions , and recommendations for possible future work.