论文标题

在Kerr-Newman解决方案的离散版本上

On the discrete version of the Kerr-Newman solution

论文作者

Khatsymovsky, V. M.

论文摘要

本文继续我们在Regge微积分框架中对黑洞的工作,其中经典解决方案的离散版本(具有与普朗克尺度成正比的一定边缘长度尺度$ b $)成为了在连接上功能集成后的功能集成后扰动扩展的最佳起点,并且具有奇异的恢复。 对当前离散的Kerr-Newman类型解决方案(使用参数$ a \ gg b $)的兴趣可能是检查经典预测,即电磁对奇点环对度量和曲率的贡献(无限)大于$δ$ function-fimpunction-fimike量的质量分配的贡献,无论电力均小,电荷都小。 在这里,我们遇到了一种离散图技术,但是具有三维(静态)图,只有几个图,尽管经过修改(扩展到复杂的坐标)传播器。 考虑了以前奇异环附近的度量标准(曲率)。电磁贡献确实确实具有无限为$ b \至0 $的相对因子,但是考虑到已知物质电荷上的上限的某些现有估计值,对于习惯物体来说,它并不是那么大,并且对于实际上非旋转的黑色孔而言才有意义。

This paper continues our work on black holes in the framework of the Regge calculus, where the discrete version (with a certain edge length scale $b$ proportional to the Planck scale) of the classical solution emerges as an optimal starting point for the perturbative expansion after functional integration over the connection, with the singularity resolved. An interest in the present discrete Kerr-Newman type solution (with the parameter $a \gg b$) may be to check the classical prediction that the electromagnetic contribution to the metric and curvature on the singularity ring is (infinitely) greater than the contribution of the $δ$-function-like mass distribution, no matter how small the electric charge is. Here we encounter a kind of a discrete diagram technique, but with three-dimensional (static) diagrams and with only a few diagrams, although with modified (extended to complex coordinates) propagators. The metric (curvature) in the vicinity of the former singularity ring is considered. The electromagnetic contribution does indeed have a relative factor that is infinite at $b \to 0$, but, taking into account some existing estimates of the upper bound on the electric charge of known substances, it is not so large for habitual bodies and can only be significant for practically non-rotating black holes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源