论文标题

损失和增益的两部分紧密结合图的稳定性映射:$ {\ cal pt} - $对称及其他

Stability mapping of bipartite tight-binding graphs with losses and gain: ${\cal PT}-$symmetry and beyond

论文作者

Moreno-Rodriguez, L. A., Martinez-Martinez, C. T., Mendez-Bermudez, J. A., Benisty, Henri

论文摘要

我们考虑由$ n $节点组成的两部分紧密结合图分为两组相等的大小:一个包含现场损失的节点,另一组具有带有现场增益的节点。节点与概率$ p $随机连接。我们为这种“油门/制动器”耦合系统(物理开放系统)的相关性提供了理由,以掌握生物化学,神经元或经济等领域的复杂网络的稳定问题,其在非炎症性汉密尔顿人方面的建模仍然处于婴儿期。具体而言,我们用参数$α$测量了两组之间的连接性,这是当前相邻对的比率与集合之间可能相邻对的总数的比率。对于一般的无方向性设置,该模型的非热汉密尔顿$ H(γ,α,n)$呈现伪 - 热度,其中$γ$是损失/增益强度。但是,我们表明,对于给定的图形设置$ h(γ,α,n)$变为$ {\ cal pt} - $ symmetric。在这两种情况下(伪热率和$ {\ cal pt} - $对称),具体取决于参数组合,即使是非赫米特人,$ h(γ,α,α,n)$的光谱也可以是真实的。因此,我们从数值上表征了$ h(γ,α,n)$的真实和假想特征值的平均分数是参数集$ \ {γ,α,n \} $的函数。我们证明,对于这两种设置,都有$γα-$平面的明确定义的扇区(以$ n $生长),其中$ h(γ,α,n)$的光谱主要是真实的。

We consider bipartite tight-binding graphs composed by $N$ nodes split into two sets of equal size: one set containing nodes with on-site loss, the other set having nodes with on-site gain. The nodes are connected randomly with probability $p$. We give a rationale for the relevance of such "throttle/brake" coupled systems (physically open systems) to grasp the stability issues of complex networks in areas such as biochemistry, neurons or economy, for which their modelling in terms of non-hermitian Hamiltonians is still in infancy. Specifically, we measure the connectivity between the two sets with the parameter $α$, which is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. For general undirected-graph setups, the non-hermitian Hamiltonian $H(γ,α,N)$ of this model presents pseudo-Hermiticity, where $γ$ is the loss/gain strength. However, we show that for a given graph setup $H(γ,α,N)$ becomes ${\cal PT}-$symmetric. In both scenarios (pseudo-Hermiticity and ${\cal PT}-$symmetric), depending on the parameter combination, the spectra of $H(γ,α,N)$ can be real even when it is non-hermitian. Thus, we numerically characterize the average fractions of real and imaginary eigenvalues of $H(γ,α,N)$ as a function of the parameter set $\{γ,α,N\}$. We demonstrate, for both setups, that there is a well defined sector of the $γα-$plane (which grows with $N$) where the spectrum of $H(γ,α,N)$ is predominantly real.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源