论文标题

您喜欢什么:使用社交注释为Twitter生成可解释的主题建议

What You Like: Generating Explainable Topical Recommendations for Twitter Using Social Annotations

论文作者

Bhattacharya, Parantapa, Ghosh, Saptarshi, Zafar, Muhammad Bilal, Ghosh, Soumya K., Ganguly, Niloy

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

With over 500 million tweets posted per day, in Twitter, it is difficult for Twitter users to discover interesting content from the deluge of uninteresting posts. In this work, we present a novel, explainable, topical recommendation system, that utilizes social annotations, to help Twitter users discover tweets, on topics of their interest. A major challenge in using traditional rating dependent recommendation systems, like collaborative filtering and content based systems, in high volume social networks is that, due to attention scarcity most items do not get any ratings. Additionally, the fact that most Twitter users are passive consumers, with 44% users never tweeting, makes it very difficult to use user ratings for generating recommendations. Further, a key challenge in developing recommendation systems is that in many cases users reject relevant recommendations if they are totally unfamiliar with the recommended item. Providing a suitable explanation, for why the item is recommended, significantly improves the acceptability of recommendation. By virtue of being a topical recommendation system our method is able to present simple topical explanations for the generated recommendations. Comparisons with state-of-the-art matrix factorization based collaborative filtering, content based and social recommendations demonstrate the efficacy of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源