论文标题

神秘的试验和理论

Mysterious Triality and M-Theory

论文作者

Sati, Hisham, Voronov, Alexander A.

论文摘要

在上一篇论文中,我们通过代数拓扑介绍了神秘的试验,以理性同义理论的形式通过代数拓扑,IQBAL,NEITZKE和VAFA的神秘二元性的形式,以物理学之间的联系,以M-Beality的尺寸减少,以及代数的角度分裂理论的形式减少了Intersypection Intersection serforce netsection netsection netsection netsection。与理性同质理论联系的起点是通过假设H对M理论动态的描述。通过假设H。这是通过4-Sphere $ \ MATHCAL {L} _C^k^4 $ serfog serfog serfog serfog serfog serfogs to todagion serfogs of tori $ t^k $的维度减少的尺寸减少。 $ \ mathbb {b} _k $,对于$ k = 0,\ dots,8 $。 通过上一篇论文中建立的数学结构,在本伴侣物理学论文中,我们提出了与Mheor的新联系,从而增强了试验性,包括增强二元性的联系。这发现了代数几何形状,代数拓扑结构和M理论之间的有趣联系,并提供了诱人的联系。我们进一步扩展了将双重性和试验扩展到Kac-Moody环境。

In a previous paper, we introduced Mysterious Triality as an extension, via algebraic topology in the form of rational homotopy theory, of Mysterious Duality by Iqbal, Neitzke, and Vafa, which provides connections between physics, in the form of dimensional reduction of M-theory, and algebraic geometry, in the form of intersection theory on del Pezzo surfaces. The starting point for that connection to rational homotopy theory is the description of M-theory dynamics using the 4-sphere, via Hypothesis H. This progresses to dimensional reduction of M-theory on tori $T^k$ with its dynamics described via cyclic loop spaces of the 4-sphere $\mathcal{L}_c^k S^4$, producing a series of data analogous to that given by the del Pezzo surfaces $\mathbb{B}_k$, for $k=0, \dots, 8$. With the mathematical constructions established in the previous paper, in this companion physics paper we present novel connections to M-theory that enhance the triality, including those strengthening the duality. This uncovers interesting ties between algebraic geometry, algebraic topology, and M-theory and provides tantalizing links. We further expand on the extension of the duality and triality to the Kac-Moody setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源