论文标题
强大的Markowitz
Robustifying Markowitz
论文作者
论文摘要
具有样本平均值和协方差为输入参数的Markowitz均值变化投资组合在实践中具有许多问题。由于估计误差,它们的表现不佳,他们经历了极端的权重,并且对输入参数的变化敏感。财务时间序列的重尾特征实际上是这些权重不稳定的原因,从而创造了大量交易成本。为了鲁棒性,我们提出了一个工具箱,用于稳定全球最低马克维茨投资组合的成本和权重。利用投影梯度下降(PGD)技术,我们避免了整个协方差算子的估计和反转,并集中于梯度下降增量的强大估计。使用现代的稳定统计工具,我们构建了一个计算高效的估计器,几乎基于平均值均匀的高斯属性而构建了高斯的属性。对股票市场的实证研究证实了这种强大的马克维茨方法。我们证明,与基于收缩和约束的投资组合相比,鲁棒的投资组合在保留或略有改善样本外部性能的同时达到了最低的营业额。
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice. They perform poorly out of sample due to estimation error, they experience extreme weights together with high sensitivity to change in input parameters. The heavy-tail characteristics of financial time series are in fact the cause for these erratic fluctuations of weights that consequently create substantial transaction costs. In robustifying the weights we present a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios. Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and inversion of the covariance operator as a whole and concentrate on robust estimation of the gradient descent increment. Using modern tools of robust statistics we construct a computationally efficient estimator with almost Gaussian properties based on median-of-means uniformly over weights. This robustified Markowitz approach is confirmed by empirical studies on equity markets. We demonstrate that robustified portfolios reach the lowest turnover compared to shrinkage-based and constrained portfolios while preserving or slightly improving out-of-sample performance.