论文标题

ehlers,卡罗尔,指控和双重费用

Ehlers, Carroll, Charges and Dual Charges

论文作者

Mittal, Nehal, Petropoulos, P. Marios, Rivera-Betancour, David, Vilatte, Matthieu

论文摘要

我们揭示了Ehlers隐藏的Möbius对称性的边界表现,以四维的ricci-flat空位存在,这些平台享受了时代的等距,并且是彼得罗夫 - 代数。这是在指定的仪表中实现的,它以平坦的全息精神形状,在该仪表中,无效边界的Carrollian三维性质是显现并协变的。 Möbius组的作用在Carrollian边界数据的空间上是局部的,其中Carrollian棉花张量在其中起主要作用。引入的Carrollian和Weyl几何工具用于塑造适当的量规以及边界共形组,即$ \ text {bms} _4 $,允许定义电动/磁性,领先/倾斜的电荷塔,直接从边界卡罗利亚人的动力学中,并在Möbiusduality组的行动下探索了它们的行为。

We unravel the boundary manifestation of Ehlers' hidden Möbius symmetry present in four-dimensional Ricci-flat spacetimes that enjoy a time-like isometry and are Petrov-algebraic. This is achieved in a designated gauge, shaped in the spirit of flat holography, where the Carrollian three-dimensional nature of the null conformal boundary is manifest and covariantly implemented. The action of the Möbius group is local on the space of Carrollian boundary data, among which the Carrollian Cotton tensor plays a predominent role. The Carrollian and Weyl geometric tools introduced for shaping an appropriate gauge, as well as the boundary conformal group, which is $\text{BMS}_4$, allow to define electric/magnetic, leading/subleading towers of charges directly from the boundary Carrollian dynamics and explore their behaviour under the action of the Möbius duality group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源