论文标题

相对论分子理论中QED Hamiltonian和负能量轨道的理论检查

Theoretical examination of QED Hamiltonian and negative-energy orbitals in relativistic molecular orbital theory

论文作者

Inoue, Nobuki, Watanabe, Yoshihiro, Nakano, Haruyuki

论文摘要

基于量子电动力学(QED)哈密顿量,检查了没有负能量轨道问题的相对论的Hartree-fock和电子相关方法。首先,以前提出的几个QED汉密尔顿人被轨道旋转不变性,电荷共轭和时间逆转不变性以及非递归主义极限筛选。然后提出了一个新的总能量表达,其中从总能量中减去了与极化真空的能量相对应的计数项。这种表达可防止由于电子相关性而导致总能量发散的可能性,这是由于QED Hamiltonian不能保留颗粒数量的事实。最后,基于哈密顿量和能量表达,重新引入了狄拉克 - 哈特里 - 库克(DHF)和电子相关方法。所得的基于QED的DHF方程的形式与常规DHF方程相同,但也正式描述了特定于QED的系统,例如氢化物离子中的虚拟正电子和正电子中的正电子。得出了三种电子相关方法:基于QED的配置相互作用以及单和多扰动方法。数值计算表明,QED Hamiltonian的总能量确实存在分歧,并且计数项有效避免差异。本文中的理论检查表明,基于QED汉密尔顿的分子轨道(MO)方法不仅解决了相对论MO方法的负能量解决方案的问题,而且还为处理含有正电子的系统提供了相对主义的形式。

The relativistic Hartree-Fock and electron correlation methods without the negative-energy orbital problem are examined on the basis of the quantum electrodynamics (QED) Hamiltonian. First, several QED Hamiltonians previously proposed are sifted by the orbital rotation invariance, the charge conjugation and time reversal invariance, and the nonrelativistic limit. A new total energy expression is then proposed, in which a counter term corresponding to the energy of the polarized vacuum is subtracted from the total energy. This expression prevents the possibility of total energy divergence due to electron correlations, stemming from the fact that the QED Hamiltonian does not conserve the number of particles. Finally, based on the Hamiltonian and energy expression, the Dirac-Hartree-Fock (DHF) and electron correlation methods are reintroduced. The resulting QED-based DHF equation has the same form as the conventional DHF equation, but also formally describes systems specific to QED, such as the virtual positrons in the hydride ion and the positron in positronium. Three electron correlation methods are derived: the QED-based configuration interactions and single- and multireference perturbation methods. Numerical calculations show that the total energy of the QED Hamiltonian indeed diverges and that the counter term is effective in avoiding the divergence. The theoretical examinations in the present article suggest that the molecular orbital (MO) methods based on the QED Hamiltonian not only solve the problem of the negative-energy solutions of the relativistic MO method, but also provide a relativistic formalism to treat systems containing positrons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源