论文标题
具有对象职业的统一对象计数网络先验
A Unified Object Counting Network with Object Occupation Prior
论文作者
论文摘要
计数任务在众多应用程序(例如人群计数,流量统计数据)中起着基本作用,旨在预测具有各种密度的对象数量。现有的对象计数任务是为单个对象类设计的。但是,在我们现实世界中,不可避免地会遇到新来的数据。我们将此方案命名为\ textit {Evolving对象计数}。在本文中,我们构建了第一个不断发展的对象计数数据集,并提出了一个统一的对象计数网络,作为解决此任务的首次尝试。所提出的模型由两个关键组件组成:类别不可或缺的掩码模块和一个类型模块。类 - 不合时宜的蒙版模块通过预测类不足的二进制掩码来先验学习通用对象职业(例如,1表示对象在图像中的考虑位置,否则为0)。类新型模块用于处理新的来临类,并为密度图预测提供了歧视性类别指南。类 - 不合Stic掩码模块和图像特征提取器的组合输出用于预测最终密度图。当新课程出现时,我们首先将新的神经节点添加到类型模块的最后一个回归和分类层中。然后,我们利用知识蒸馏来帮助模型记住已经学到了以前的对象类的知识,而不是从头开始探讨模型。我们还使用支持样本库来存储每个类的少量典型培训样本,这些样本用于防止模型忘记旧数据的关键信息。通过这种设计,我们的模型可以有效地适应新的班级,同时在没有大规模重新训练的情况下保持良好的性能。在收集的数据集上进行的大量实验证明了有利的性能。
The counting task, which plays a fundamental role in numerous applications (e.g., crowd counting, traffic statistics), aims to predict the number of objects with various densities. Existing object counting tasks are designed for a single object class. However, it is inevitable to encounter newly coming data with new classes in our real world. We name this scenario as \textit{evolving object counting}. In this paper, we build the first evolving object counting dataset and propose a unified object counting network as the first attempt to address this task. The proposed model consists of two key components: a class-agnostic mask module and a class-incremental module. The class-agnostic mask module learns generic object occupation prior via predicting a class-agnostic binary mask (e.g., 1 denotes there exists an object at the considering position in an image and 0 otherwise). The class-incremental module is used to handle new coming classes and provides discriminative class guidance for density map prediction. The combined outputs of class-agnostic mask module and image feature extractor are used to predict the final density map. When new classes come, we first add new neural nodes into the last regression and classification layers of class-incremental module. Then, instead of retraining the model from scratch, we utilize knowledge distillation to help the model remember what have already learned about previous object classes. We also employ a support sample bank to store a small number of typical training samples of each class, which are used to prevent the model from forgetting key information of old data. With this design, our model can efficiently and effectively adapt to new coming classes while keeping good performance on already seen data without large-scale retraining. Extensive experiments on the collected dataset demonstrate the favorable performance.