论文标题
2D铁磁材料Fe3gete2中旋转簇玻璃状态的增强和出现
Enhanced coercivity and emergence of spin cluster glass state in 2D ferromagnetic material Fe3GeTe2
论文作者
论文摘要
二维(2D)Van der Waals(VDW)具有较高的牢固性和高$ T_ \ Text {C} $的磁性材料是Spintronics和Memory Storage应用程序的。 Fe $ _3 $ gete $ _2 $(F3GT)就是这样的2D VDW Ferromagnet,具有相当高的$ t_ \ text {C} $,但具有非常低的强制性领域,$ h_ \ text {c} $($ \ \ \ \ \ \ \ \ \ \ flowsim $ 100〜oe)。增强$ h_ \ text {c} $的一些常见技术是引入固定中心,缺陷,压力,掺杂等。它们涉及其他重要磁性特性不良改变的风险。在这里,我们通过改变样品生长条件来大大提高样品的内在胁迫性(7-10次),而不会损害其基本磁性($ T_ \ t_ \ text {c} \ simeq $ 2100k),从而提出了一种非常简单,健壮且高效的相工程方法。相工程样品(F3GT-2)由父型F3GT相组成,其中一小部分的共浮标(FT)相的随机嵌入簇。 FT阶段是在其抗铁磁过渡温度($ t_ \ text {c1} \ sim $ 70〜K)上的F3GT晶粒之间的两个镶嵌中心,也是$ T_ \ t_t_ \ text {c1} $的反相域。结果,晶界障碍和亚稳性的性质大大增加,导致高度增强的强化,簇自旋玻璃和元磁性行为。增强的强制性($ \ simeq $ 1〜KOE)使F3GT-2对内存存储应用程序更有用,并且很可能阐明了一条新的途径来调整有用的磁性属性。此外,此方法比异性结构和其他繁琐的技术更方便。
Two-dimensional (2D) van der Waals (vdW) magnetic materials with high coercivity and high $T_\text{C}$ are desired for spintronics and memory storage applications. Fe$_3$GeTe$_2$ (F3GT) is one such 2D vdW ferromagnet with a reasonably high $T_\text{C}$, but with a very low coercive field, $H_\text{c}$ ($\lesssim$100~Oe). Some of the common techniques of enhancing $H_\text{c}$ are by introducing pinning centers, defects, stress, doping, etc. They involve the risk of undesirable alteration of other important magnetic properties. Here we propose a very easy, robust, and highly effective method of phase engineering by altering the sample growth conditions to greatly enhance the intrinsic coercivity (7-10 times) of the sample, without compromising its fundamental magnetic properties ($T_\text{C}\simeq$210K). The phase-engineered sample (F3GT-2) comprises of parent F3GT phase with a small percentage of randomly embedded clusters of a coplanar FeTe (FT) phase. The FT phase serves as both mosaic pinning centers between grains of F3GT above its antiferromagnetic transition temperature ($T_\text{C1}\sim$70~K) and also as anti-phase domains below $T_\text{C1}$. As a result, the grain boundary disorder and metastable nature are greatly augmented, leading to highly enhanced coercivity, cluster spin glass, and meta-magnetic behavior. The enhanced coercivity ($\simeq$1~kOe) makes F3GT-2 much more useful for memory storage applications and is likely to elucidate a new route to tune useful magnetic properties. Moreover, this method is much more convenient than hetero-structure and other cumbersome techniques.