论文标题

通过刚度实现多亚西亚希德拉

Realizations of multiassociahedra via rigidity

论文作者

Ruiz, Luis Crespo, Santos, Francisco

论文摘要

令$Δ_K(n)$表示$(k+1)$的简单复合物 - $ \ binom {[n]} {2} $中的边缘边缘的边缘子集。这里$ k,n \ in \ mathbb n $和$ n \ ge 2k+1 $。 琼森(Jonsson,2003)证明了(忽略不能属于任何$(k+1)$ - 交叉的一部分的短边),$δ_k(n)$是尺寸$ k(n-2k-1)-1 $的可壳范围,并猜测它是多面的。 Knutson和Miller(2004)在子词复合体上的工作中出现了相同的结果和问题。 尽管付出了巨大的努力,但众所周知,该猜想的唯一值为$(k,n)$是$ n \ le 2k+3 $(Pilaud and Santos,2012)和$(2,8)$(Bokowski and Pilaud,2009年)。 使用刚度理论中的想法并在瞬间曲线中选择点,我们将$δ_k(n)$作为$(k,n)\ in \ in \ {(2,9),(2,10),(2,10),(3,10)$的多层人士。我们还将其视为所有$ n \ le 13 $和任意$ k $的简单风扇,除了Pairs $(3,12)$和$(3,13)$。 最后,我们还表明,对于$ k \ ge 3 $和$ n \ ge 2k+6 $,没有选择点可以通过杆和关节刚度在矩曲线沿杆和关节刚度实现$δ_k(n)$,或者更一般地通过辅助因子刚度刚度刚度具有convex位置的任意点。

Let $Δ_k(n)$ denote the simplicial complex of $(k+1)$-crossing-free subsets of edges in $\binom{[n]}{2}$. Here $k,n\in \mathbb N$ and $n\ge 2k+1$. Jonsson (2003) proved that (neglecting the short edges that cannot be part of any $(k+1)$-crossing), $Δ_k(n)$ is a shellable sphere of dimension $k(n-2k-1)-1$, and conjectured it to be polytopal. The same result and question arose in the work of Knutson and Miller (2004) on subword complexes. Despite considerable effort, the only values of $(k,n)$ for which the conjecture is known to hold are $n\le 2k+3$ (Pilaud and Santos, 2012) and $(2,8)$ (Bokowski and Pilaud, 2009). Using ideas from rigidity theory and choosing points along the moment curve we realize $Δ_k(n)$ as a polytope for $(k,n)\in \{(2,9), (2,10) , (3,10)\}$. We also realize it as a simplicial fan for all $n\le 13$ and arbitrary $k$, except the pairs $(3,12)$ and $(3,13)$. Finally, we also show that for $k\ge 3$ and $n\ge 2k+6$ no choice of points can realize $Δ_k(n)$ via bar-and-joint rigidity with points along the moment curve or, more generally, via cofactor rigidity with arbitrary points in convex position.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源