论文标题
使用多个纠缠状态的多个副本与设备无关的随机性认证
Device-independent randomness certification using multiple copies of entangled states
论文作者
论文摘要
我们证明,最大纠结的两分族态在多大程度上,可以产生更多的认证随机性,而不是从单个副本中获得认证。尽管似乎更大的系统的维度意味着更高的随机性,但非主动性在于与设备无关的同时认证从许多纠缠状态的副本中生成的随机性。这是因为,大多数两次结果的铃铛不平等(即clauser-horne-shimony-holt,典雅或链铃的不等式)都针对单个两倍纠缠状态的副本进行了优化。因此,这种钟声不平等不能证明许多纠缠状态的副本,也不能证明更高的随机性。在这项工作中,我们适当地调用了一个$ n $ settings铃铛的不平等家庭,该家庭对$ \ lfloor n/2 \ rfloor $ copies of Maximimimimimimimimimiakally纠结的两分国家的副本进行了优化,从而具有从多个Qubit Contangled State的许多副本中证明更多随机性的能力。
We demonstrate to what extent many copies of maximally entangled two-qubit states enable for generating a greater amount of certified randomness than that can be certified from a single copy. Although it appears that greater the dimension of the system implies a higher amount of randomness, the non-triviality lies in the device-independent simultaneous certification of generated randomness from many copies of entangled states. This is because, most of the two-outcome Bell inequalities (viz., Clauser-Horne-Shimony-Holt, Elegant, or Chain Bell inequality) are optimized for a single copy of two-qubit entangled state. Thus, such Bell inequalities can certify neither many copies of entangled states nor a higher amount of randomness. In this work, we suitably invoke a family of $n$-settings Bell inequalities which is optimized for $\lfloor n/2 \rfloor$ copies of maximally entangled two-qubit states, thereby, possess the ability to certify more randomness from many copies of two-qubit entangled state.