论文标题

$ 3 $的拓扑,具有均匀积极标量曲率的拓扑

Topology of $3$-manifolds with uniformly positive scalar curvature

论文作者

Wang, Jian

论文摘要

在本文中,我们对具有均匀积极标态曲率的$ 3 $ manifolds进行了分类。确切地说,我们表明,当且仅当它是(可能是)无限连接的球形$ 3 $ -MANIFOLDS和一些$ \ Mathbb {s} s}^1 \ times \ times \ Mathbb {s}^2 $的$ 3 $ -MANIFOLD和一些副本时,面向$ 3 $ MANIFOLD的完全标量曲率具有完整的指标。此外,我们研究了一个带有平均凸边界的面向$ 3 $ manifold,并且具有均匀的正标曲率。如果边界是封闭表面的不一致结合,则歧管是(可能)无限的球形$ 3 $ manifolds,一些手柄和某些副本的$ \ mathbb {s}^1 \ times \ times \ mathbb {s}^2 $。

In this article, we classify (non-compact) $3$-manifolds with uniformly positive scalar curvature. Precisely, we show that an oriented $3$-manifold has a complete metric with uniformly positive scalar curvature if and only if it is homeomorphic to an (possibly) infinite connected sum of spherical $3$-manifolds and some copies of $\mathbb{S}^1\times \mathbb{S}^2$. Further, we study an oriented $3$-manifold with mean convex boundary and with uniformly positive scalar curvature. If the boundary is a disjoint union of closed surfaces, then the manifold is an (possibly) infinite conned sum of spherical $3$-manifolds, some handlebodies and some copies of $\mathbb{S}^1\times \mathbb{S}^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源