论文标题
MeAformer:元模态混合动力的多模式实体对齐变压器
MEAformer: Multi-modal Entity Alignment Transformer for Meta Modality Hybrid
论文作者
论文摘要
多模式实体对准(MMEA)旨在发现其实体与相关图像相关联的不同知识图(kgs)的相同实体。但是,当前的MMEA算法依赖于KG级的模态融合策略,用于多模式实体表示,该策略忽略了不同实体的模态偏好的变化,从而损害了在模糊图像和关系等模态下对噪声的鲁棒性。本文介绍了MeeFormer,这是一种用于元模态混合动力的多模式实体对准变压器方法,该方法可以动态预测模态之间的相关系数,以实现更细粒度的实体级别的模态融合和对齐。实验结果表明,我们的模型不仅在多种培训方案中实现SOTA性能,包括受监督,无监督,迭代和低资源设置,而且还具有有限的参数,有效的运行时和可解释性。我们的代码可在https://github.com/zjukg/meaformer上找到。
Multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) whose entities are associated with relevant images. However, current MMEA algorithms rely on KG-level modality fusion strategies for multi-modal entity representation, which ignores the variations of modality preferences of different entities, thus compromising robustness against noise in modalities such as blurry images and relations. This paper introduces MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, which dynamically predicts the mutual correlation coefficients among modalities for more fine-grained entity-level modality fusion and alignment. Experimental results demonstrate that our model not only achieves SOTA performance in multiple training scenarios, including supervised, unsupervised, iterative, and low-resource settings, but also has a limited number of parameters, efficient runtime, and interpretability. Our code is available at https://github.com/zjukg/MEAformer.