论文标题

基于相似性的预测维护框架用于旋转机械

Similarity-Based Predictive Maintenance Framework for Rotating Machinery

论文作者

Aburakhia, Sulaiman, Tayeh, Tareq, Myers, Ryan, Shami, Abdallah

论文摘要

在智能制造中,数据驱动的技术通常用于旋转机械的状况监测和故障诊断。经典方法使用有监督的学习,其中分类器在标记的数据上接受培训,以预测或对机器的不同操作状态进行分类。但是,在大多数工业应用中,标记的数据在大小和类型方面受到限制。因此,它不能满足培训目的。在本文中,通过将分类任务作为与参考样本而不是监督分类任务的相似性度量来解决此问题。基于相似性的方法需要有限的标记数据,因此满足现实世界中的工业应用的要求。因此,本文引入了基于相似性的旋转机械预测维护(PDM)的框架。对于机器的每个操作状态,根据机器的操作条件生成并标记一个参考振动信号。因此,使用统计时间分析,快速傅立叶变换(FFT)和短时傅立叶变换(STFT)来从捕获的振动信号中提取特征。对于每种特征类型,三个相似性指标,即结构相似性度量(SSM),余弦相似性和欧几里得距离,用于测量特征空间中测试信号和参考信号之间的相似性。因此,在特征类型相似度测量组合方面进行了九种设置。实验结果证实了与基于机器学习(ML)的方法相比,基于相似性的方法在实现非常高准确性方面的有效性。此外,结果表明,与其他设置相比,使用具有余弦相似性的FFT功能将导致更高的性能。

Within smart manufacturing, data driven techniques are commonly adopted for condition monitoring and fault diagnosis of rotating machinery. Classical approaches use supervised learning where a classifier is trained on labeled data to predict or classify different operational states of the machine. However, in most industrial applications, labeled data is limited in terms of its size and type. Hence, it cannot serve the training purpose. In this paper, this problem is tackled by addressing the classification task as a similarity measure to a reference sample rather than a supervised classification task. Similarity-based approaches require a limited amount of labeled data and hence, meet the requirements of real-world industrial applications. Accordingly, the paper introduces a similarity-based framework for predictive maintenance (PdM) of rotating machinery. For each operational state of the machine, a reference vibration signal is generated and labeled according to the machine's operational condition. Consequentially, statistical time analysis, fast Fourier transform (FFT), and short-time Fourier transform (STFT) are used to extract features from the captured vibration signals. For each feature type, three similarity metrics, namely structural similarity measure (SSM), cosine similarity, and Euclidean distance are used to measure the similarity between test signals and reference signals in the feature space. Hence, nine settings in terms of feature type-similarity measure combinations are evaluated. Experimental results confirm the effectiveness of similarity-based approaches in achieving very high accuracy with moderate computational requirements compared to machine learning (ML)-based methods. Further, the results indicate that using FFT features with cosine similarity would lead to better performance compared to the other settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源