论文标题
具有提高的采样效率的多镜头多对象跟踪
Multisensor Multiobject Tracking with Improved Sampling Efficiency
论文作者
论文摘要
对声学或无线电来源的被动监视在现代便利,公共安全和监视中具有重要的应用。被动监视的关键任务是多对象跟踪(MOT)。本文提出了一种用于挑战对象状态高维问题的多传感器MOT的贝叶斯方法,测量值遵循非线性模型。我们的方法是在因子图和总产品算法(SPA)的框架中开发的,并使用随机样品或“颗粒”实现。水疗中心提供的多模式概率密度函数(PDF)由高斯混合模型(GMM)有效地表示。为了提高样品效率,我们使用颗粒流(PFL)进行水疗中心的操作。在这里,基于部分微分方程的解决方案,粒子迁移到高似然的区域。这使得即使在具有较低尺寸的单传感器测量的挑战性多传感器MOT方案中,可以获得良好的对象检测和跟踪性能。我们在被动的声学监测方案中执行数值评估,其中从一对氢键提供的1-D时间差异(TDOA)测量中,在3-D中跟踪多个来源。与最新的参考技术相比,我们的数值结果表明了有利的检测和估计精度。
Passive monitoring of acoustic or radio sources has important applications in modern convenience, public safety, and surveillance. A key task in passive monitoring is multiobject tracking (MOT). This paper presents a Bayesian method for multisensor MOT for challenging tracking problems where the object states are high-dimensional, and the measurements follow a nonlinear model. Our method is developed in the framework of factor graphs and the sum-product algorithm (SPA) and implemented using random samples or "particles". The multimodal probability density functions (pdfs) provided by the SPA are effectively represented by a Gaussian mixture model (GMM). To perform the operations of the SPA with improved sample efficiency, we make use of Particle flow (PFL). Here, particles are migrated towards regions of high likelihood based on the solution of a partial differential equation. This makes it possible to obtain good object detection and tracking performance even in challenging multisensor MOT scenarios with single sensor measurements that have a lower dimension than the object positions. We perform a numerical evaluation in a passive acoustic monitoring scenario where multiple sources are tracked in 3-D from 1-D time-difference-of-arrival (TDOA) measurements provided by pairs of hydrophones. Our numerical results demonstrate favorable detection and estimation accuracy compared to state-of-the-art reference techniques.