论文标题
使用GNSS录音的小波分析检测慢滑动事件
Detection of slow slip events using wavelet analysis of GNSS recordings
论文作者
论文摘要
在许多地方,在慢速滑移方面观察到了构造震颤,并且可以用作研究中等大小的慢滑动事件的代理,其中隐藏在全球导航卫星系统(GNSS)噪声中的表面变形。但是,当观察到震颤和慢速滑移之间的明确关系时,无法应用这些方法,我们需要其他方法才能更好地检测和量化慢速滑移。小波方法,例如离散小波变换(DWT)和最大重叠离散小波变换(MODWT)是数学工具,用于通过观察时间序列的加权差异从一个周期到下一个时期来分析时间和频域在时间和频域中同时分析时间序列。我们使用小波方法来分析卡斯卡迪亚慢速事件的GNSS时间序列。我们使用登出的GNSS数据,应用MODWT变换,然后将小波细节堆叠在附近的几个GNSS站。作为对慢速事件的时机的独立检查,我们还计算了GNSS站附近的震颤数量的累积数量,降低了此信号,并应用MODWT变换。在两个时间序列中,我们都可以看到同时的波形,其时序与慢速事件的时机相对应。我们假设每当有正峰,然后小波信号中的负峰值时,就会发生慢速滑动事件。我们验证仅使用GNSS数据检测到的慢速事件与仅使用震颤数据检测到的慢速事件之间存在良好的一致性。基于小波的检测方法有效地检测了高于6的幅度事件,该事件由独立事件目录确定。为了证明在没有明显震颤的区域中使用小波分析,我们还分析了来自新西兰的GNSS数据,并检测到在空间和时间上与其他研究先前检测到的慢速事件。
In many places, tectonic tremor is observed in relation to slow slip and can be used as a proxy to study slow slip events of moderate magnitude where surface deformation is hidden in Global Navigation Satellite System (GNSS) noise. However, when no clear relationship between tremor and slow slip occurrence is observed, these methods cannot be applied, and we need other methods to be able to better detect and quantify slow slip. Wavelets methods such as the Discrete Wavelet Transform (DWT) and the Maximal Overlap Discrete Wavelet Transform (MODWT) are mathematical tools for analyzing time series simultaneously in the time and the frequency domain by observing how weighted differences of a time series vary from one period to the next. We use wavelet methods to analyze GNSS time series of slow slip events in Cascadia. We use detrended GNSS data, apply the MODWT transform and stack the wavelet details over several nearby GNSS stations. As an independent check on the timing of slow slip events, we also compute the cumulative number of tremor in the vicinity of the GNSS stations, detrend this signal, and apply the MODWT transform. In both time series, we can then see simultaneous waveforms whose timing corresponds to the timing of slow slip events. We assume that there is a slow slip event whenever there is a positive peak followed by a negative peak in the wavelet signal. We verify that there is a good agreement between slow slip events detected with only GNSS data, and slow slip events detected with only tremor data. The wavelet-based detection method effectively detects events of magnitude higher than 6 as determined by independent event catalogs. As a demonstration of using the wavelet analysis in a region without significant tremor, we also analyze GNSS data from New Zealand and detect slow slip events that are spatially and temporally close to those detected previously by other studies.