论文标题
超快速激光激发的选择规则和检测三次抗铁磁铁中自旋相关动力学的检测规则
Selection rules for ultrafast laser excitation and detection of spin correlations dynamics in a cubic antiferromagnet
论文作者
论文摘要
交换相互作用决定了磁性材料中微观旋转之间的相关性。在超时长度和时间尺度上探测这些自旋相关的动力学是多么挑战,因为它需要同时高的空间和高时间分辨率。激光驱动的两麦克农模式的最新实验证明 - 通过交换耦合控制的抗铁磁体中的区域边缘激发 - 提出了有关观察到的旋转动力学的显微镜性质的问题,其基于其激发的机制以及它们的大量表现为实现检测。在这里,根据简单的显微镜模型,我们得出了描述泵和探针脉冲极化的立方系统的选择规则,以激发和检测最近邻邻自旋相关性的动态,并可以用来将这种动态与其他磁激励和磁磁效应分离。我们表明,即使在没有自旋轨道耦合的情况下,激光驱动的自旋相关性也有助于抗铁磁铁的光学各向异性。此外,我们强调了旋转各向异性在自旋系统中的作用,并证明了抗铁磁顺序参数的动力学仅出现在近代领先的顺序中,这是由磁各向异性的较小确定的,与系统中的异位型交换相比。我们期望我们的结果将刺激并支持在最短的时间尺度上对磁相关的进一步研究。
Exchange interactions determine the correlations between microscopic spins in magnetic materials. Probing the dynamics of these spin correlations on ultrashort length and time scales is, however rather challenging, since it requires simultaneously high spatial and high temporal resolution. Recent experimental demonstrations of laser-driven two-magnon modes - zone-edge excitations in antiferromagnets governed by exchange coupling - posed questions about the microscopic nature of the observed spin dynamics, the mechanism underlying its excitation, and their macroscopic manifestation enabling detection. Here, on the basis of a simple microscopic model, we derive the selection rules for cubic systems that describe the polarization of pump and probe pulses required to excite and detect dynamics of nearest-neighbor spin correlations, and can be employed to isolate such dynamics from other magnetic excitations and magneto-optical effects. We show that laser-driven spin correlations contribute to optical anisotropy of the antiferromagnet even in the absence of spin-orbit coupling. In addition, we highlight the role of subleading anisotropy in the spin system and demonstrate that the dynamics of the antiferromagnetic order parameter occurs only in next-to-leading order, determined by the smallness of the magnetic anisotropy as compared to the isotropic exchange interactions in the system. We expect that our results will stimulate and support further studies of magnetic correlations on the shortest length and time scale.